
CypherShield
Audit Report

Prepared for

JILAI

Audit report

Token Smart Contract

Table of contents

S No Contents Page

1 Scope of Audit 03

2 Check Vulnerabilities 05

3 Techniques and Methods 08

4 Issue Categories 10

5 Number of security issues per severity. 11

6 Issues Found – Code Review / Manual Testing 12

6.1 Contract – JILAI Token 12

A. High Severity Issues 12

B. Medium Severity Issues 12

C. Low Severity Issues 13

7 Test Cases for Functional Testing 18

8 Automated Tests 19

8.1 Slither 19

8.2 Results 28

9 Closing Summary 28

02 www.cyphershield.tech

03 www.cyphershield.tech

1. Scope of the Audit

The scope of this audit was to analyse and document JILAI Token Smart
Contract codebase for quality, security, and correctness.

On March 26, 2025 to March 28, 2025, upon the request of JILAI Token
Contract, CypherShield Team started a security audit related to JILAI Token Smart
Contract.

On April 1, 2025, the said team sent the first report relating to said audit to JILAI
Token Smart Contract

JILAI Web3 Development Team fixed the bugs found during the audit process
as indicated in the audit report.

Then, from April 8, 2025 to April 10, 2025, the CypherShield Team conducted a
security re-audit for JILAI Token Smart Contract.

Smart Contract Code Repository- Audit fixes have been updated in the
same repository : https://github.com/Blockchainxtech/Jilai-Contracts/tree/stages/
contracts/JilaiToken

Version Date Release notes

1.0 28/03/2025 Initial report sent to the client. All findings are in open status.

2.0 08/04/2025
Re-audit was completed for the fixed findings, and the status has
been updated.

The scope of this audit was to conduct a comprehensive analysis and
documentation of the JILAI Token smart contract codebase with a focus on the
following key areas:

https://www.cyphershield.tech/
https://github.com/Blockchainxtech/Jilai-Contracts/tree/stages/contracts/JilaiToken
https://github.com/Blockchainxtech/Jilai-Contracts/tree/stages/contracts/JilaiToken

04 www.cyphershield.tech

1. Code Quality

� Evaluating the overall structure, readability, and maintainability of the code�

� Ensuring adherence to Solidity best practices and industry standards�

� Identifying areas where the code could be optimized for efficiency and clarity.

2. Security

� Identifying potential vulnerabilities, including reentrancy attacks, integer
overflows/underflows, access control issues, and unprotected upgradeability�

� Analyzing external calls and dependencies for possible exploits�

� Verifying the proper implementation of access controls, authorization
mechanisms, and role management.

3. Correctness and Functionality

� Verifying that the smart contract logic behaves as intended�

� Ensuring that token distribution, vesting schedules, and sale processes are
accurately implemented�

� Validating that all mathematical operations and conditions are properly handled
to prevent unexpected behavior.

4. Compliance and Consistency

� Ensuring compliance with Solidity naming conventions and code formatting
standards�

� Checking for the correct usage of events, modifiers, and error handling to ensure
consistency and traceability.

5. Documentation and Transparency

� Providing detailed explanations of the identified issues, their potential impact, and
recommended fixes�

� Offering suggestions for code optimization, readability improvements, and gas
efficiency enhancements.

https://www.cyphershield.tech/

05 www.cyphershield.tech

2. Checked Vulnerabilities

We have scanned the smart contract for commonly known and more specific
vulnerabilities.Here are some of the commonly known vulnerabilities that we
considered:

Here are 25 of the most well-known vulnerabilities to be aware of when auditing
Solidity smart contracts:

A. Reentrancy: Vulnerable contracts can be re-entered before the current call
completes, allowing attackers to manipulate the state or steal funds.

B. Integer Overflow/Underflow: Arithmetic operations can lead to unexpected
results or vulnerabilities if not properly checked for overflow or underflow.

C. Unchecked External Calls: External calls should be carefully validated to
prevent unauthorized access or unexpected behavior.

D. Access Control Issues: Lack of proper access controls can allow unauthorized
users to manipulate the token distribution sale contract or access sensitive
functions.

E. Gas Limit DoS: Inefficient code or loops can consume excessive gas, leading to
denial-of-service (DoS) attacks by exhausting gas limits.

F. Unchecked Return Values: Failure to check return values from external calls
can result in vulnerabilities such as ignoring errors or unexpected outcomes.

G. Timestamp Dependence: Relying on block timestamps for critical decisions
can be manipulated by miners, compromising the contract's integrity.

H. Randomness Vulnerabilities: Insecure random number generation can be
exploited to predict outcomes or manipulate the token distribution sale process.

I. Front-Running: Attackers can exploit transaction ordering to gain advantages,
such as purchasing tokens at favorable prices before others.

J. Denial-of-Service (DoS): Malicious actors can target the token distribution
contract with resource-intensive operations, causing disruption or delays.

K. Uninitialized Storage Pointers: Improper initialization of storage pointers can
lead to unexpected data corruption or vulnerabilities.

L. Delegate call/Callcode Vulnerabilities: Misuse of delegatecall or callcode can
result in unintended behavior or security vulnerabilities.

M. Insufficient Input Validation: Failing to validate input data can lead to
vulnerabilities such as buffer overflows or unexpected contract states.

N. Improper Type Casting: Incorrectly casting data types can lead to
vulnerabilities such as data truncation or unexpected behavior.

O. Public State Variables: Exposing sensitive state variables as public can lead to
unauthorized access or manipulation.

P. Use of Deprecated Functions/Libraries: Deprecated functions or libraries may
have known vulnerabilities that attackers can exploit.

Q. Unprotected Self-Destruct: Lack of protection on self-destruct can lead to
funds being irreversibly sent to unintended addresses.

R. Gas Token Vulnerability: Vulnerabilities related to gas tokens can be exploited
to manipulate gas costs or abuse gas refunds.

S. Unprotected Ether Withdrawal: Contracts that allow unrestricted withdrawal
of Ether can be vulnerable to attacks by unauthorized users.

06 www.cyphershield.tech

T. Missing Events for State Changes: Failure to emit events for state changes

can make it difficult to track contract behavior and detect anomalies during the

token distribution.

U. Forced Ether Transfer: Contracts may be vulnerable if they allow external

parties to force Ether transfers without proper validation or authorization.

V. Insecure Dependency Management: Using unverified or untrusted

dependencies can introduce vulnerabilities to the token distribution contract.

W. Unprotected Upgradeability: If the token distribution contract is upgradeable,

ensure that upgrade mechanisms are secure and not susceptible to

unauthorized upgrades or manipulations.

X. Insecure Whitelisting: If the token distribution implements whitelisting for

participants, ensure that the whitelisting mechanism is secure and cannot be

bypassed or manipulated by attackers.

07 www.cyphershield.tech

3. Techniques and Methods:

Throughout the audit of the smart contract, care was taken to ensure:

08 www.cyphershield.tech

3.1 Structural Analysis:

In this step, we conducted a structural analysis of the smart contract's design
patterns and overall structure. We carefully examined the organization to ensure
that the smart contract is structured in a manner that minimizes the likelihood of
encountering issues in the future.

3.2 Code Review / Manual Analysis:

We conducted a thorough manual review of the code to uncover new
vulnerabilities and confirm any vulnerabilities identified during the static analysis.
This involved a detailed examination of the contracts, checking their logic against
the descriptions in the whitepaper. Additionally, we manually checked and validated
the results from the automated analysis tools.

3.3 Static Analysis:

We performed a static analysis of the smart contracts to pinpoint any potential
vulnerabilities. This involved using a set of automated tools specifically designed to
test the security aspects of the smart contracts.

The following techniques, methods, and tools were used to review all the smart
contracts.

� The overall quality of code.

� Use of best practices.

� Code documentation and comments match logic and expected behavior.

� Token distribution and calculations are as per the intended behavior
mentioned in the whitepaper.

� Efficient use of gas.

� Code is safe from re-entrancy and other vulnerabilities.

09 www.cyphershield.tech

3.4 Gas Consumption:

In this phase, we examined how smart contracts perform in real-world usage.
We focused on understanding the amount of computational resources (gas)
consumed and explored opportunities to optimize the code for lower gas
consumption.

3.5 Tools and Platforms Used for Audit:

We utilized a range of tools such as Remix IDE, Truffle, Truffle Team, Solhint,
Mythril, Slither, Solidity Statistic Analysis, Theo, and Visual Studio Code. These tools
helped us in various aspects of smart contract development, testing, and analysis,
ensuring a comprehensive approach to building secure and efficient contracts.

10 www.cyphershield.tech

4. Issue Categories:

In the report, each issue has been categorized based on its severity level. There

are four levels of severity, and I've outlined each one below for better understanding.

Risk-level Description Description

High

A high-severity issue or vulnerability indicates that your

smart contract is susceptible to exploitation. These

issues are critical as they can significantly impact the

performance or functionality of the smart contract. It's

highly recommended to address these issues before

deploying the contract in a live environment.

Medium

Medium severity issues typically stem from errors and

deficiencies within the smart contract code. While not

as critical as high-severity issues, these issues can still

lead to problems and should be addressed to ensure

the contract's robustness and reliability.

Low

Low-level severity issues generally have a minor impact

or are considered warnings that may not require

immediate fixing. However, it's advisable to address

these issues at some point in the future to maintain the

overall quality and stability of the smart contract.

Informational

These severity issues are typically related to

improvement requests, general questions, cosmetic or

documentation errors, or requests for information. They

have little to no impact on the smart contract's

functionality or performance.

5. Number of issues per severity:

07
Total Issue

High 0

Medium 1

Low 6

Informational 0

Title Category Severity Status

Ignored Return Value in

_upgradeToAndCall
Code Quality Medium

This issue is from the
OpenZeppelin library, so it does
not affect our contract and can

be safely ignored.

Inline Assembly in _revert Code Quality Low

This issue is from the
OpenZeppelin library, so it does
not affect our contract and can

be safely ignored.

Multiple Solidity Versions Used Code Quality Low Fixed

Dead Code in Context

Upgradeable, ERC1967 Upgrade

Upgradeable, Initializable, and

UUPS Upgradeable

Code Quality Low

This issue is from the
OpenZeppelin library, so it does
not affect our contract and can

be safely ignored.

Incorrect Versions of Solidity Used Security Low Fixed

Low-Level Calls in Address

Upgradeable
Security Low

This issue is from the
OpenZeppelin library, so it does
not affect our contract and can

be safely ignored.

Non-MixedCase Naming

Convention
Code Style Low

This issue is from the
OpenZeppelin library, so it does
not affect our contract and can

be safely ignored.

11 www.cyphershield.tech

12 www.cyphershield.tech

6. Issues Found - Code Review / Manual Testing

6.1 Contract - JILAI Token

A. High-severity issues

There is no High severity issues found

B. Medium-severity issues

B.1 Ignored Return Value in _upgradeToAndCall

Description: The return value from
AddressUpgradeable.functionDelegateCall(newImplementation, data) is
ignored in the _upgradeToAndCall function, which may cause issues in tracking
the success or failure of the function call.

Recommendation: To resolve the issue of ignoring the return value in both
_upgradeToAndCall and _upgradeBeaconToAndCall, you should handle or log
the return value. This can help you ensure that you properly track the success or
failure of the delegated function call.

13 www.cyphershield.tech

Recommended Code Fix :

function (

 ,

 ,

) {

 (,) =

. (,);

 (,);

}

_upgradeToAndCall

internal

functionDelegateCall
require

address newImplementation
bytes memory data
bool forceCall

bool success
AddressUpgradeable newImplementation data

success

// Call the function delegate and handle the return value

"Upgrade failed"

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#unused-return

C. Low-severity issues

C.1 Inline Assembly in _revert

Description: The use of inline assembly in AddressUpgradeable._revert(bytes,
string) could lead to unexpected behavior, hard-to-debug errors, or issues with
future Solidity versions.

Recommendation: Avoid Inline Assembly Usage:

Inline assembly can be useful for gas optimization, but it should be used
cautiously. Rewriting functions in pure Solidity, whenever possible, can reduce
security risks and improve code maintainability.  

For instance, instead of using inline assembly for storage slot reading (which
can be done using assembly), you can use Solidity's native function calls, such
as storage operations, to access storage slots directly.

https://github.com/crytic/slither/wiki/Detector-Documentation#unused-return

14 www.cyphershield.tech

Recommended Code Fix :

function () () {

 {

 := ()

 }

}

getAddressSlot internal view returns

sload

bytes32 slot address r

assembly
slot

// Instead of using assembly, directly access storage

r

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage

C.2 Multiple Solidity Versions Used

Description: The project uses multiple Solidity versions, which can cause
compatibility issues, unexpected behavior, and difficulties in maintaining the
contract.

Recommendation: Unify Solidity Version:

It is recommended to use the same version of Solidity across your project to
avoid compatibility issues. The simplest solution is to align the version
constraints in all the Solidity files. Choose the latest version that supports the
features you need and is compatible with all libraries used.

Adjust Pragma Directives:

Modify the pragma directive in all files to specify a single version or a
compatible range.

https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage

15 www.cyphershield.tech

Recommended Code Fix :

// contracts/Jilai.sol

pragma solidity ^ . ;0.8 27

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#different-pragma-
directives-are-used

Recommended Code Fix :

function
function
function

 () { ... }

 () { ... }

 () () { ... }

__Context_init internal initializer
__Context_init_unchained internal initializer
_msgData internal view returns bytes calldata

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

C.3 Dead Code in Context Upgradeable, ERC1967 Upgrade Upgradeable, Initializable,
and UUPS Upgradeable

Description: The project contains multiple functions and methods that are never
used. This dead code should be removed to reduce complexity, improve
maintainability, and decrease the size of the deployed contract.

Recommendation: Remove Unused Functions and Methods:

The functions and methods identified in the audit report are never used within
your contract or its interactions. They should be removed to avoid unnecessary
bloat and improve clarity.

https://github.com/crytic/slither/wiki/Detector-Documentation#different-pragma-directives-are-used
https://github.com/crytic/slither/wiki/Detector-Documentation#different-pragma-directives-are-used
https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

16 www.cyphershield.tech

C.4 Low-Level Calls in Address Upgradeable

Description: Low-level calls such as call, static call, and delegate call by pass
Solidity's type safety checks and error handling, making them risky. They:  
Do not revert on failure unless explicitly handled.

Are prone to reentrancy attacks.

Can introduce unexpected behavior due to gas forwarding issues.

Recommendation: Use OpenZeppelin's Safe Functions:

Replace low-level calls with OpenZeppelin's safe functions, such as
Address.functionCall or Address.functionDelegateCall, which handle reverts
properly.

Recommended Code Fix :

// Instead of this:

// Use this:

(,) = . { : }();

 = . (, , ,
);

success returndata target call value data

returndata Address target data value

value

functionCallWithValue "Low-level
call failed"

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-
solidity

https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

17 www.cyphershield.tech

C.5 Non-MixedCase Naming Convention

Description: Several functions and variables in the contract do not follow
Solidity's mixedCase naming convention, making the codebase inconsistent
and potentially less readable. According to Solidity best practices:

Functions and variables should follow mixedCase.

Constants should use UPPER_CASE_WITH_UNDERSCORES.

Events and structs should use CamelCase.

Recommendation: Refactor Function Names to MixedCase

Functions prefixed with __ should be refactored to follow mixedCase naming
conventions.

Recommended Code Fix :

// Before

// After (MixedCase)

function
function

function
function

 () { ... }

 () { ... }

 () { ... }

 () { ... }

__Ownable_init public initializer
__Ownable_init_unchained public initializer

initializeOwnable public initializer
initializeOwnableUnchained public initializer

Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-
solidity

https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

18 www.cyphershield.tech

7. Test Cases for Functional Testing

Some of the test cases which were part of the functional testing are listed
below:

Description Status

Ensure that owner can not approve with '0' amount to a spender Pass

Verify that while trying to approve more than the available balance is failed Pass

Ensure that approving the tokens for invalid address is not possible Pass

Ensure that Burning more than balance Should revert (insufficient balance). Pass

Ensure that Burning from zero address Should revert (invalid sender). Pass

verify that Reducing the approved spending limit of a spender works correctly by
entering the correct amount

Pass

Verify that Decrease below '0' Should revert (allowance cannot be negative). Pass

Ensure that Increasing a spender's token spending limit works correctly by
entering the correct amount

Pass

Ensure that Increase by '0' tokens Should execute but have no effect. Pass

Verify that Direct token transfer between accounts works correctly Pass

Ensure that Transfer more than balance Should revert (insufficient funds). Pass

Verify that Self-transfer Should execute but have no effect. Pass

19 www.cyphershield.tech

8. Automated Tests

8.1 Slither

INFO Detectors

Reference https

INFO Detectors

: :

. (, ,)

(/@ / - / / /
. # -)

. (,)
(/@ / - / / /

. #)

. (, ,)
(/@ / - / / /

. # -)
. (().

(),) (/@ / - /
/ / . #)

: :

: :

. (,) (/@ /

- / / . # -)
 - (/@ / - / /

. # -)

. () (/

@ / - / /
. # -)

 - (/@ / - / /
. # -)

. () (/

@ / - / /
. # -)

 - (/@ / - / /
. # -)

ERC1967UpgradeUpgradeable address bytes bool
node_modules openzeppelin contracts upgradeable proxy

ERC1967UpgradeUpgradeable sol ignores value by
AddressUpgradeable newImplementation data
node_modules openzeppelin contracts upgradeable proxy

ERC1967UpgradeUpgradeable sol
ERC1967UpgradeUpgradeable address bytes bool
node_modules openzeppelin contracts upgradeable proxy

ERC1967UpgradeUpgradeable sol ignores value by
AddressUpgradeable newBeacon

data node_modules openzeppelin contracts upgradeable
proxy ERC1967UpgradeUpgradeable sol

AddressUpgradeable bytes string node_modules openzeppelin
contracts upgradeable utils AddressUpgradeable sol uses assembly

node_modules openzeppelin contracts upgradeable utils
AddressUpgradeable sol
StorageSlotUpgradeable bytes32 node_modules
openzeppelin contracts upgradeable utils

StorageSlotUpgradeable sol uses assembly

node_modules openzeppelin contracts upgradeable utils

StorageSlotUpgradeable sol
StorageSlotUpgradeable bytes32 node_modules
openzeppelin contracts upgradeable utils

StorageSlotUpgradeable sol uses assembly

node_modules openzeppelin contracts upgradeable utils

StorageSlotUpgradeable sol

_upgradeToAndCall

functionDelegateCall

_upgradeBeaconToAndCall

functionDelegateCall IBeaconUpgradeable im
plementation

_revert

ASM

getAddressSlot

ASM

getBooleanSlot

ASM

ERC1967

ERC1967

ERC1967

ERC1967

INLINE

INLINE

INLINE

65 70

68

156 162

160

231 243

236 239

62 67

64 66

72 77

74 76

return

return

//github.com/crytic/slither/wiki/Detector-
Documentation#unused-return

https://www.cyphershield.tech/

20 www.cyphershield.tech

StorageSlotUpgradeable bytes32 node_modules
openzeppelin contracts upgradeable utils

StorageSlotUpgradeable sol uses assembly

node_modules openzeppelin contracts upgradeable utils

StorageSlotUpgradeable sol
StorageSlotUpgradeable bytes32 node_modules
openzeppelin contracts upgradeable utils

StorageSlotUpgradeable sol uses assembly

node_modules openzeppelin contracts upgradeable utils

StorageSlotUpgradeable sol
StorageSlotUpgradeable bytes32 node_modules
openzeppelin contracts upgradeable utils

StorageSlotUpgradeable sol uses assembly

node_modules openzeppelin contracts upgradeable utils

StorageSlotUpgradeable sol
StorageSlotUpgradeable string node_modules openzeppelin
contracts upgradeable utils StorageSlotUpgradeable sol uses
assembly

node_modules openzeppelin contracts upgradeable utils
StorageSlotUpgradeable sol
StorageSlotUpgradeable bytes32 node_modules
openzeppelin contracts upgradeable utils

StorageSlotUpgradeable sol uses assembly

node_modules openzeppelin contracts upgradeable utils

StorageSlotUpgradeable sol
StorageSlotUpgradeable bytes node_modules openzeppelin
contracts upgradeable utils StorageSlotUpgradeable sol uses
assembly

node_modules openzeppelin contracts upgradeable utils
StorageSlotUpgradeable sol

. () (/
@ / - / /

. # -)
 - (/@ / - / /

. # -)

. () (/
@ / - / /

. # -)
 - (/@ / - / /

. # -)

. () (/
@ / - / /

. # -)
 - (/@ / - / /

. # -)

. () (/@ /
- / / . # -)

 - (/@ / - / /
. # -)

. () (/

@ / - / /
. # -)

 - (/@ / - / /
. # -)

. () (/@ /

- / / . # -)

 - (/@ / - / /
. # -)

: :

getBytes32Slot

ASM

getUint256Slot

ASM

getStringSlot

ASM

getStringSlot

ASM

getBytesSlot

ASM

getBytesSlot

ASM

82 87

84 86

92 97

94 96

102 107

104 106

112 117

114 116

122 127

124 126

132 137

134 136

INLINE

INLINE

INLINE

INLINE

INLINE

INLINE

Reference https //github.com/crytic/slither/wiki/Detector-
Documentation#assembly-usage

https://www.cyphershield.tech/

21 www.cyphershield.tech

INFO Detectors
used

by

by

by

by

: :

 :

 - ^ . :

 -^ . (/ . #)

 - ^ . :

 -^ . (/@ / - / /

. #)

 -^ . (/@ / - /

/ . #)

 -^ . (/@ / - /

/ - . #)

 -^ . (/@ / - / /

/ . #)

 -^ . (/@ / - / /

/ . #)

 -^ . (/@ / - / /

/ . #)

-^ . (/@ / - / / /

. #)

 -^ . (/@ / - / /

/ / . #)

 -^ . (/@ / - / /

. #)

 -^ . (/@ / - / /

. #)

 - ^ . :

 -^ . (/@ / - / /

/ . #)

 -^ . (/@ / - / /

/ . #)

 - ^ . :

 -^ . (/@ / - / /

. #)

4
0.8 27

0.8 27 2
0.8 0

0.8 0
4

0.8 0
4

0.8 0
4

0.8 0
4

0.8 0
4

0.8 0
4

0.8 0
4

0.8 0
4

0.8 0
4

0.8 0
5

0.8 2
0.8 2

4
0.8 2

4
0.8 1

0.8 1
4

different versions Solidity are
Version constraint is used

contracts Jilai sol
Version constraint is used

node_modules openzeppelin contracts upgradeable access
OwnableUpgradeable sol

node_modules openzeppelin contracts upgradeable
interfaces IERC1967Upgradeable sol

node_modules openzeppelin contracts upgradeable
interfaces draft IERC1822Upgradeable sol

node_modules openzeppelin contracts upgradeable proxy
beacon IBeaconUpgradeable sol

node_modules openzeppelin contracts upgradeable proxy
utils UUPSUpgradeable sol

node_modules openzeppelin contracts upgradeable token
ERC20Upgradeable sol

node_modules openzeppelin contracts upgradeable token
IERC20Upgradeable sol

node_modules openzeppelin contracts upgradeable token
extensions IERC20MetadataUpgradeable sol

node_modules openzeppelin contracts upgradeable utils
ContextUpgradeable sol

node_modules openzeppelin contracts upgradeable utils
StorageSlotUpgradeable sol

Version constraint is used
node_modules openzeppelin contracts upgradeable proxy

ERC1967UpgradeUpgradeable sol
node_modules openzeppelin contracts upgradeable proxy

utils Initializable sol
Version constraint is used

node_modules openzeppelin contracts upgradeable utils
AddressUpgradeable sol

of

ERC20
ERC20

ERC20

ERC1967

https://www.cyphershield.tech/

22 www.cyphershield.tech

Reference https

INFO Detectors

: :

: :

. () (/@ /

- / / . # -)

. () (/
@ / - / / . # -)

. () (/@ / -

/ / . # -)

. () (/
@ / - / / /

. # -)

. ()
(/@ / - / / /

. # -)

. () (/
@ / - / / /

. # -)

. () (/@ /
- / / /

. # -)

. () (/@ /
- / / /

. # -)

. () (/
@ / - / / /

. # -)

//github.com/crytic/slither/wiki/Detector-
Documentation#different-pragma-directives-are-used

ContextUpgradeable node_modules openzeppelin
contracts upgradeable utils ContextUpgradeable sol is never used
and should be removed

ContextUpgradeable node_modules
openzeppelin contracts upgradeable utils ContextUpgradeable sol

is never used and should be removed

ContextUpgradeable node_modules openzeppelin contracts
upgradeable utils ContextUpgradeable sol is never used and should
be removed

ERC1967UpgradeUpgradeable node_modules
openzeppelin contracts upgradeable proxy

ERC1967UpgradeUpgradeable sol is never used and should be removed

ERC1967UpgradeUpgradeable
node_modules openzeppelin contracts upgradeable proxy

ERC1967UpgradeUpgradeable sol is never used and should be removed

ERC1967UpgradeUpgradeable address node_modules
openzeppelin contracts upgradeable proxy

ERC1967UpgradeUpgradeable sol is never used and should be
removed

ERC1967UpgradeUpgradeable node_modules openzeppelin
contracts upgradeable proxy
ERC1967UpgradeUpgradeable sol is never used and should be
removed

ERC1967UpgradeUpgradeable node_modules openzeppelin
contracts upgradeable proxy
ERC1967UpgradeUpgradeable sol is never used and should be
removed

ERC1967UpgradeUpgradeable address node_modules
openzeppelin contracts upgradeable proxy

ERC1967UpgradeUpgradeable sol is never used and should be
removed

__Context_init

__Context_init_unchained

_msgData

__ERC1967Upgrade_init

__ERC1967Upgrade_init_unchained

_changeAdmin

_getAdmin

_getBeacon

_setAdmin

18 19

21 22

27 29

20 21

23 24

120 123

103 105

134 136

110 113

ERC1967

ERC1967

ERC1967

ERC1967

ERC1967

ERC1967

https://www.cyphershield.tech/

23 www.cyphershield.tech

ERC1967UpgradeUpgradeable address node_modules
openzeppelin contracts upgradeable proxy

ERC1967UpgradeUpgradeable sol is never used and should be
removed

ERC1967UpgradeUpgradeable address bytes bool
node_modules openzeppelin contracts upgradeable proxy

ERC1967UpgradeUpgradeable sol is never used and should be
removed

Initializable node_modules openzeppelin
contracts upgradeable proxy utils Initializable sol is never used
and should be removed

Initializable node_modules openzeppelin contracts
upgradeable proxy utils Initializable sol is never used and should
be removed

UUPSUpgradeable node_modules
openzeppelin contracts upgradeable proxy utils

UUPSUpgradeable sol is never used and should be removed

Version constraint contains known severe https

FullInlinerNonExpressionSplitArgumentEvaluationOrder

MissingSideEffectsOnSelectorAccess

AbiReencodingHeadOverflowWithStaticArrayCleanup

DirtyBytesArrayToStorage

DataLocationChangeInInternalOverride

NestedCalldataArrayAbiReencodingSizeValidation

SignedImmutables

ABIDecodeTwoDimensionalArrayMemory

KeccakCaching

. () (/
@ / - / / /

. # -)

. (, ,)
(/@ / - / / /

. # -)

. () (/@ /
- / / / . # -)

. () (/@ / -
/ / / . # -)

. () (/

@ / - / / /
. # -)

: :

: :

 ^ . (:

 -
 -
 -
 -
 -
 -
 -
 -
 - .

_setBeacon

_upgradeBeaconToAndCall

_getInitializedVersion

_isInitializing

__UUPSUpgradeable_init_unchained

issues

ERC1967

ERC1967

141 148

156 162

156 158

163 165

26 27

0.8 0

Reference https

INFO Detectors

//github.com/crytic/slither/wiki/Detector-
Documentation#dead-code

//
solidity.readthedocs.io/en/latest/bugs.html)

https://www.cyphershield.tech/

24 www.cyphershield.tech

It is used
node_modules openzeppelin contracts upgradeable access

OwnableUpgradeable sol
node_modules openzeppelin contracts upgradeable interfaces

IERC1967Upgradeable sol
node_modules openzeppelin contracts upgradeable interfaces

draft IERC1822Upgradeable sol
node_modules openzeppelin contracts upgradeable proxy

beacon IBeaconUpgradeable sol
node_modules openzeppelin contracts upgradeable proxy utils

UUPSUpgradeable sol
node_modules openzeppelin contracts upgradeable token

ERC20Upgradeable sol
node_modules openzeppelin contracts upgradeable token

IERC20Upgradeable sol
node_modules openzeppelin contracts upgradeable token

extensions IERC20MetadataUpgradeable sol
node_modules openzeppelin contracts upgradeable utils

ContextUpgradeable sol
node_modules openzeppelin contracts upgradeable utils

StorageSlotUpgradeable sol
Version constraint contains known severe https

FullInlinerNonExpressionSplitArgumentEvaluationOrder

MissingSideEffectsOnSelectorAccess

AbiReencodingHeadOverflowWithStaticArrayCleanup

DirtyBytesArrayToStorage

DataLocationChangeInInternalOverride

NestedCalldataArrayAbiReencodingSizeValidation

SignedImmutables

ABIDecodeTwoDimensionalArrayMemory

KeccakCaching

 :

 - ^ . (/@ / - / /

. #)

 - ^ . (/@ / - / /

. #)

 - ^ . (/@ / - / /

- . #)

 - ^ . (/@ / - / /

/ . #)

 - ^ . (/@ / - / / /

. #)

 - ^ . (/@ / - / /

/ . #)

 - ^ . (/@ / - / /

/ . #)

 - ^ . (/@ / - / /

/ / . #)

 - ^ . (/@ / - / /

. #)

 - ^ . (/@ / - / /

. #)

 ^ . (:

 -
 -
 -
 -
 -
 -
 -
 -
 - .

by
0.8 0

4
0.8 0

4
0.8 0

4
0.8 0

4
0.8 0

4
0.8 0

4
0.8 0

4
0.8 0

4
0.8 0

4
0.8 0

5
0.8 2

ERC20

ERC20

ERC20

issues //
solidity.readthedocs.io/en/latest/bugs.html)

https://www.cyphershield.tech/

25 www.cyphershield.tech

It is used
node_modules openzeppelin contracts upgradeable proxy

ERC1967UpgradeUpgradeable sol
node_modules openzeppelin contracts upgradeable proxy utils

Initializable sol
Version constraint contains known severe https

FullInlinerNonExpressionSplitArgumentEvaluationOrder

MissingSideEffectsOnSelectorAccess

AbiReencodingHeadOverflowWithStaticArrayCleanup

DirtyBytesArrayToStorage

DataLocationChangeInInternalOverride

NestedCalldataArrayAbiReencodingSizeValidation

SignedImmutables

ABIDecodeTwoDimensionalArrayMemory

KeccakCaching

It is used by
node_modules openzeppelin contracts upgradeable utils

AddressUpgradeable sol
Reference https

Detectors
Low level call AddressUpgradeable address uint256
node_modules openzeppelin contracts upgradeable utils

AddressUpgradeable sol
success None recipient call value: amount node_modules

openzeppelin contracts upgradeable utils AddressUpgradeable sol
Low level call
AddressUpgradeable address bytes uint256 string
node_modules openzeppelin contracts upgradeable utils

AddressUpgradeable sol
success returndata target call value: value data node_modules

openzeppelin contracts upgradeable utils AddressUpgradeable sol

 :

 - ^ . (/@ / - / /

/ . #)

 - ^ . (/@ / - / / /

. #)

 ^ . (:

 -
 -
 -
 -
 -
 -
 -
 -
 - .

 :

 - ^ . (/@ / - / /

. #)

: :

: :

 . (,)

(/@ / - / /
. # -):

 - (,) = . { }() (/
@ / - / / . #)

. (, , ,)

(/@ / - / /
. # -):

 - (,) = . { }() (/
@ / - / / . #)

by
0.8 2

4
0.8 2

4
0.8 1

0.8 1
4

64 69

67

128 137

135

ERC1967

INFO

issues

sendValue

functionCallWithValue

//
solidity.readthedocs.io/en/latest/bugs.html)

//github.com/crytic/slither/wiki/Detector-
Documentation#incorrect-versions-of-solidity

in

in

https://www.cyphershield.tech/

26 www.cyphershield.tech

Low level call
AddressUpgradeable address bytes string node_modules
openzeppelin contracts upgradeable utils

AddressUpgradeable sol
success returndata target data node_modules

openzeppelin contracts upgradeable utils AddressUpgradeable sol
Low level call
AddressUpgradeable address bytes string
node_modules openzeppelin contracts upgradeable utils

AddressUpgradeable sol
success returndata target data node_modules

openzeppelin contracts upgradeable utils AddressUpgradeable sol

Function OwnableUpgradeable node_modules
openzeppelin contracts upgradeable access OwnableUpgradeable sol

is not mixedCase

Function OwnableUpgradeable node_modules
openzeppelin contracts upgradeable access OwnableUpgradeable sol

is not mixedCase

Variable OwnableUpgradeable node_modules openzeppelin contracts
upgradeable access OwnableUpgradeable sol is not mixedCase

Function ERC1967UpgradeUpgradeable
node_modules openzeppelin contracts upgradeable proxy

ERC1967UpgradeUpgradeable sol is not mixedCase

Function ERC1967UpgradeUpgradeable
node_modules openzeppelin contracts upgradeable proxy

ERC1967UpgradeUpgradeable sol is not mixedCase

Variable ERC1967UpgradeUpgradeable node_modules openzeppelin
contracts upgradeable proxy ERC1967UpgradeUpgradeable sol
is not mixedCase

Function UUPSUpgradeable node_modules
openzeppelin contracts upgradeable proxy utils

UUPSUpgradeable sol is not mixedCase

. (, ,) (/

@ / - / /
. # -):

 - (,) = . () (/
@ / - / / . #)

. (, ,)

(/@ / - / /
. # -):

 - (,) = . () (/
@ / - / / . #)

: :

: :

 . () (/

@ / - / / . # -)

 . () (/
@ / - / / . # -)

 . (/@ / -

/ / . #)
 . ()

(/@ / - / / /
. # -)

 . ()
(/@ / - / / /

. # -)
 . (/@ /
- / / / . #)

 . () (/

@ / - / / /
. # -)

in

in

in

in

in

in

in

in

in

functionStaticCall

staticcall

functionDelegateCall

delegatecall

__Ownable_init

__Ownable_init_unchained

__gap

__ERC1967Upgrade_init

__ERC1967Upgrade_init_unchained

__gap

__UUPSUpgradeable_init

155 162

160

180 187

185

29 31

33 35

94

20 21

23 24

169

23 24

Reference https

INFO Detectors

//github.com/crytic/slither/wiki/Detector-
Documentation#low-level-calls

ERC1967

ERC1967

ERC1967

https://www.cyphershield.tech/

27 www.cyphershield.tech

Function UUPSUpgradeable
node_modules openzeppelin contracts upgradeable proxy utils

UUPSUpgradeable sol is not mixedCase

Variable UUPSUpgradeable node_modules openzeppelin contracts
upgradeable proxy utils UUPSUpgradeable sol is not mixedCase

Variable UUPSUpgradeable node_modules openzeppelin contracts
upgradeable proxy utils UUPSUpgradeable sol is not mixedCase

Function ERC20Upgradeable string string node_modules
openzeppelin contracts upgradeable token

ERC20Upgradeable sol is not mixedCase

Function ERC20Upgradeable string string
node_modules openzeppelin contracts upgradeable token

ERC20Upgradeable sol is not mixedCase

Variable ERC20Upgradeable node_modules openzeppelin contracts
upgradeable token ERC20Upgradeable sol is not mixedCase

Function ContextUpgradeable node_modules openzeppelin
contracts upgradeable utils ContextUpgradeable sol is not
mixedCase

Function ContextUpgradeable node_modules
openzeppelin contracts upgradeable utils ContextUpgradeable sol

is not mixedCase

Variable ContextUpgradeable node_modules openzeppelin contracts
upgradeable utils ContextUpgradeable sol is not mixedCase

contracts Jilai sol contracts with detectors
s found

 . ()
(/@ / - / / /

. # -)
 . (/@ / -

/ / / . #)
 . (/@ / -

/ / / . #)
 . (,) (/

@ / - / / /
. # -)

 . (,)
(/@ / - / / /

. # -)
 . (/@ / -

/ / / . #)
 . () (/@ /
- / / . # -)

 . () (/
@ / - / / . # -)

 . (/@ / -

/ / . #)
: :

: : / . (),
 ()

__UUPSUpgradeable_init_unchained

__self

__gap

__ERC20_init

__ERC20_init_unchained

__gap

__Context_init

__Context_init_unchained

__gap

analyzed
result

26 27

29

111

55 57

59 62

376

18 19

21 22

36

14 93
49

in

in

in

in

in

in

in

in

in

ERC20

ERC20

ERC20

Reference https

INFO Slither

//github.com/crytic/slither/wiki/Detector-
Documentation#conformance-to-solidity-naming-conventions

https://www.cyphershield.tech/

28 www.cyphershield.tech

8.2 Results

The JILAI Token smart contracts demonstrate a solid and secure

architectural foundation. All previously identified critical vulnerabilities have

been successfully addressed. With the implemented fixes, the contracts are now

significantly more secure, gas-efficient, and maintainable.

9. Closing Summary

The smart contracts were well-written and adhered to the guidelines.

However, several issues were identified during the audit. The development team

resolved all the issues, and the contract re-audit was successfully completed.

As vulnerabilities exist in the web3 spaces, is one of the kinds of Security

and Smart Contract audit company rendering exceptionally professional smart contract

auditing services for varied Crypto projects. In the process of rendering your projects, full-on

auditing services help you come over your smart contract vulnerabilities and reach a higher

scale in the market.

Cypershield

© 2025 Cyphershield. All rights reserved.For more information : contact@cyphershield.tech

mailto:contact@cyphershield.tech

